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Summary 
This deliverable was submitted with a delay compared to the date estimated in 
DoA because the date for the NEUROTECH Forum, during which contributions 
to the Roadmap from the community were collected fell in Month 13 (Nov. 4).  
 
 

Introduction:  

The goal of the Roadmap 
 
This roadmap will be completed into two stages, where this is the first stage. 
The aim of the first roadmap is to gather ideas and define directions. We identify 
key directions for neuromorphic computing, key applications, key technologies 
and main challenges. We present a qualitative state of the art and goals of the 
field. 
The aim of the final roadmap is to complete the first by quantifying these goals 
and the state of the art, putting a timeline and proposing ideas to tackle the 
challenges. 

Approach to develop a Roadmap 
 
We used the NEUROTECH Forum to collect opinions from experts and the 
community on several questions related to the NCT Roadmap. This was done 
during a guided panel discussion (recording is available) and with an online 
questionnaire, which the Forum participants were invited to fill-in. The members 
of the Work Groups were also contacted to give their opinion. 
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Neuromorphic computing as a goal 
 
Our first action for developing a Roadmap was to improve the definition of 
neuromorphic computing. Rather than having an inside/outside boundary, we 
see neuromorphic computing as a goal towards which different directions 
converge. These directions are schematized in Figure 1. They correspond to 
features of the brain as a computer, which we seek inspiration from. These 
directions structure the roadmap of neuromorphic computing as they are the 
guiding principles of the field. 
 
Each of these directions represent a breakthrough from the current computing 
paradigm. In such, Neuromorphic computing represents an extremely 
ambitious multi-disciplinary effort. Each direction will require significant 
advances in computing theory, architecture and device physics. 
 
Hardware vs. simulation 
Taking inspiration from the brain for computing is already present in machine 
learning and artificial intelligence through artificial neural network algorithms. 
This abstract inspiration has already given rise to tremendous progress in 
image, video, audio and natural language processing, and to successful 
commercial applications. However, in order to unlock significant gains in terms 
of performance and efficiency, a more ambitious step needs to be taken: to 
build a new kind of computers, inspired from the brain at the hardware level. 
This is the goal of neuromorphic computing. We seek not just simulate artificial 
neural networks, but to actually build them. 
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Efficient vs. power-hungry 
Application-wise, one key motivation for neuromorphic computing is to achieve 
higher power efficiency than existing solutions. Artificial neural networks, when 
run on conventional hardware, consume a lot of energy. State-of-the-art GPUs 
consume several hundreds of Watts, which limit the deployment of neural 
networks on embedded systems. Even supercomputers consuming a Mega 
Watt cannot emulate the whole human brain, which limits our ability to improve 
our understanding of the brain through such simulations. In comparison, the 
human brain only consumes 20 Watt. The energy efficiency of the brain is 
several hundreds of tera operations per second and per Watt, while existing 
solutions are limited to a few tera operations per second and per Watt. By 
building computers inspired from the brain at the hardware level, neuromorphic 
computing will bridge this energy efficiency gap. 
 
Parallel vs. sequential 
One of the most impressive features of the human brain is its massive 
parallelism. Although each neuron computes at the millisecond scale (much 
slower than CMOS transistors which function below the nanosecond), the brain 
can perform 100 Tera Operations per second, orders of magnitude more than 
artificial neural networks on conventional computers. Parallel computing is a 
much studied topic beyond the scope of neuromorphic computing. However, 
parallel computing in conventional computer architectures is quite limited. 
Approaching the parallelism of the brain will require drastic changes in 
computer architectures. Moreover, it will require low power components so that 
they can all function simultaneously. Indeed, in current processors, the whole 
chips cannot function simultaneously because of power budget. 
 
In-memory computing vs. von Neumann architecture 
Conventional computers rely on the von Neumann architecture, where memory 
and computing are physically separated. In consequence, a large part of the 
energy consumption and delays are due to the transfer of information between 
memory and computing parts, a phenomenon often referred to as “von 
Neumann bottleneck”. In neural network algorithms, this issue is critical 
because huge numbers of parameters need to be stored and frequently 
addressed. The brain is extremely different in this regard: memory and 
computing are completely intertwined. The neurons, which compute, are 
connected by synapses, which carry the memory. Neuromorphic computing 
aims at bringing memory and computing together to achieve “in-memory 
computing”.  
In-memory computing is being made possible through the development of 
emerging nanoscale memory devices. Various classes of such memories exist 
and will be discussed in this roadmap. Their common assets are that they are 
non-volatile, fast and low energy, can be read and written electrically and can 
be monolithically integrated into CMOS chips. 
 
Plastic vs. rigid 
Learning in the brain is made possible by its plasticity. The connections 
between neurons – the synapses – are not rigid but plastic, which means they 
can be modified. Learning, both in the brain and in artificial neural networks 
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algorithms, corresponds to repetitive modification of the synapses until 
reaching a set of connections enabling the neural network to perform tasks 
accurately. In conventional computers, this is done by explicit modification of 
the memory banks storing the weights. Neuromorphic computing aims at 
building systems where weights are self-modified through local rules. Here 
again, the role of non-volatile memories intertwined with computing circuits is 
critical. Their dynamics makes it possible to implement bio-inspired learning 
rules. For instance, memristors can implement Spike Timing Dependent 
Plasticity, a bio-inspired rule for unsupervised learning. 
 
Analogue vs. digital 
Conventional computers rely on digital encoding: voltages in the processor at 
the steady state only take two values, which represent 0 and 1. Transient 
intermediary values do not represent anything. All numbers are coded in binary, 
as a string of 0 and 1. In the brain, this is not the case. The electrical potential 
at the membranes of neurons can take continuous values, and so can the 
synaptic weights. Reproducing such behavior with digital encoding takes large 
circuits. Thus, using directly an analogue encoding will improve efficiency. 
Neuromorphic computing aims at using components which intrinsic analogue 
behavior mimics the key functions of neurons and synapses. For neurons, this 
can be achieved by CMOS transistors used in an analogue regime and by 
emerging technologies such as spintronic nanodevices or photonics. For 
synapses, which also require non-volatility, emerging memories are a key 
enabler.  
 
Dynamic vs. static 
Conventional computers use the steady state of their circuits to encode 
information. On the contrary, the brain is a complex dynamic system. Biological 
neurons are non-linear oscillators that emit spikes of voltage. They are coupled 
to each other and capable of collective behavior such as synchronization. There 
are also some indications that the brain functions at the critical point between 
order and chaos. Neuromorphic computing aims at emulating such dynamic 
behavior in order to go beyond the possibilities of static neural networks, in 
particular regarding learning. Here again, it is key to have circuits and 
components which intrinsic analogue dynamics emulates neural functions. 
Coupled oscillators can be achieved with CMOS ring oscillators, spintronic 
devices, metal-oxide sandwiches, photonics devices etc. 
 
Spiking vs. clocked 
Conventional computers are run by a clock which sets the pace of all circuits. 
There is no such clock in the brain. Neurons emit and receive spikes in an 
asynchronous way. Neuromorphic aims at building computers built on these 
principles. By having activity only when necessary, energy consumption will be 
reduced.  
 
Stochastic vs. exact 
Conventional computers aim at very high precision, coding numbers in 64 bits 
floating point precision. In the brain, this is far from the case as biological 
environment is noisy and neurons and synapses exhibit variability and 
stochasticity. Resilience to such imprecision seems to be a key asset of neural 
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networks. There are even suggestions that the brain uses noise for computing. 
Relaxing the constraints on the exactitude of components and computing steps 
will decrease energy consumption. Obtaining accurate results with approximate 
computing components and steps is a goal of neuromorphic computing. This 
will be crucial to be able to use components in their analogue regime, where 
noise and variability are more significant. 
 

Applications “pull” 
 
Neuromorphic computing is both of scientific and practical interest. This 
illustrated by the fact that both academics and industrials (from large groups to 
start-ups) are active in the field. 
 
By definition, neuromorphic computing should provide solutions for problems 
where the brain is particularly efficient. Neuromorphic computing does not aim 
at replacing general computing. Rather, neuromorphic computing will be used 
in specialized chips that work together will general purpose chips.  
 
Here, we provide an overview of the most promising applications of 
neuromorphic computing. To select these applications, we have solicited the 
Work Groups – in particular the Industry group – as well as the Forum 
participants, both by email and during the panel discussion of the Forum. These 
answers complete the results of the internal discussions of the consortium. 
 
Artificial Intelligence on the edge 
Neuromorphic computing will provide systems capable of running state of the 
art artificial intelligence tasks – deep neural networks – while consuming little 
power and energy. This opens the way to the deployment of artificial 
intelligence on the edge and in embedded systems, where consumption and 
size are critical. 
Key applications are: 
 

 Detection (always-on sensor processing, very low latency and low power, 
~10mW) 

 Recognition (could be triggered by ultralow-power detection, power: 
~0.1mW) 

 Situation awareness (semantic map of the environment, needs to be 
stored and updated online) 

 
Sensor processing 
“Smart” sensors currently still rely heavily on computing centers where they 
send raw data to be processed and sent back. The ability for sensors to process 
information on site without data transfer would provide faster response as well 
as better security and privacy. 
Neuromorphic computing could in particular be useful for the observation of 
sensory signals and decision to trigger further processing or an action made on 
the edge (bio-signal monitoring, fall detection, voice detection, etc.). 
Neuromorphic computing will be a key enabler of an efficient and secure 
internet of things. 
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Health 
Health is a field that is currently being transformed by neural networks, for 
instance for classifying tumor images into benign or malignant. Neuromorphic 
computing could bring further benefits, in particular for processing dynamical 
signals and time series. On example of application is ECG online evaluation.  
The potential of neuromorphic computing for low power, small size chips 
performing artificial intelligence tasks can revolution biomedical sensors: 
implants could be capable of performing real time complex monitoring. 
In health, the importance of data privacy is huge, making on-site processing of 
information even more critical. 

 
Robotics 
A natural application for neuromorphic computing is robotics. In particular, it 
could give rise to agile, compliant robots with Human-Robot Interaction (HRI) 
capabilities such as: 

 Learning dynamical models 
 Coordination of behavior 
 Force control 

Merging health with robotics is full of applications for neuromorphic computing. 
Smart pills capable of action in the body and prosthetics are two key examples. 
 
Optimization  
Artificial neural networks use learning to solve large optimization problems. This 
has many applications outside what is usually thought of as cognitive tasks. 
This includes: 

 Complex systems with many parameters 
 High performance computing   
 Thermodynamic simulation (which involves massive matrix-

multiplication tasks which could be accelerated similar to NCT) 
 
Natural language processing 
Neuromorphic computing has the potential to process natural language and 
perform tasks such as translation and interpretation. It will be able to process 
speech in real time, from the raw dynamical data, to the reasoning on the 
extracted meaning. 
 
Personal assistants 
Combining different applications of neuromorphic computing such as 
optimization and natural language processing will lead to more efficient 
personal assistants. These will be capable of time management and 
scheduling, but also of assistive robotics and care, in particular for elders. 
 
Autonomous vehicles 
Combining robotics, sensory processing, optimization, and potentially natural 
language processing, autonomous vehicles has a strong need for 
neuromorphic computing. Many large industrial groups are working on the 
topic. One critical limitation of the autonomous car is the power consumption 
and size of the computing systems it relies on (several kW and a large space 
in the truck). 
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Smart manufacturing  
Industrial machines and processes can benefit greatly from neuromorphic 
computing. Optimization of a whole process or fabrication chain is one 
example. Robotics applications of neuromorphic computing will make 
fabrication more efficient. Neuromorphic computing can also provide solutions 
for anomaly detection in time series, automatization of controls and tests, 
design for manufacturing, defect detection and forecast, predictive 
maintenance of machines etc. These will make industry more sustainable. 
 
Computational neuroscience 
Neuromorphic chips will be privileged systems to simulate biological neural 
networks. Thus, they could contribute to understanding the brain. This would 
bring massive novel knowledge but also provide new treatment for neurological 
diseases. It might also bring some light on how to achieve general intelligence. 
 

Technology: state of art and directions 
 
The slow-down in the scaling of CMOS transistors (often referred to as the “end 
of Moore’s law”), combined with the fact that the requirements of neuromorphic 
computing completely differ from conventional computing systems, have called 
for the use of new technologies for building neuromorphic chip.  
 
The involvement of novel technologies brings opportunities for neuromorphic 
computing, both in terms of functionalities (such as dynamical systems or 
memories) and efficiency (power consumption, size, speed etc.).  
However, many of these technologies are not at the same maturity level as 
conventional digital CMOS transistors, which is a challenge for the 
development of neuromorphic chips, both for industrials and academics. 
 
Here we review the major technologies used for neuromorphic computing. In 
this first draft of the roadmap, we have identified the major technologies and 
key points to evaluate the assets and drawbacks of these technologies.  
 
We list here the major technologies, from the most mature to the most 
exploratory. 
 
Digital CMOS 
 
Analogue and mixed-signal CMOS 
 
Phase-change memories 
 
Resistive switching memories (filamentary, oxram) 
 
Spintronics 
 
Optics 
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For each technology, the final roadmap will provide the following information, 
from experts in each subfield: 
 
1) Describe your technology in a few sentences 
2) Give one or two recent major results involving your technology  
3) Give the important numbers for your technology. 

 Size of a neuron 
 Size of a synapse 
 Endurance of devices 
 Retention? 
 Size of on chip network that could be built 
 For ‘read’, ‘write’, ‘MAC’ operations (and other relevant) please provide: 

o Energy of operation 
o Power consumption 
o Speed of operation 

4) Give one to five key advantages of your technology, compared to others. 
5) Give one to five challenges for your technology 
6) How mature is your technology (widely fabricated, commercialized)? 
7) Give one or two major advances expected in the next years 
8) Give one or two specific applications where your technology would be useful 
 

Challenges for neuromorphic computing 
 
In order to unlock its potential and provide the applications described above, 
neuromorphic computing must overcome several challenges. Discussions 
within the consortium, the work groups and at the forum have allowed us to 
come up with a list of limitations and challenges that neuromorphic computing 
currently faces. 
 
Neuromorphic computing is mostly a recent field of study. Although some work 
had started in the early days of computing, the recent progress both in artificial 
intelligence and in emerging technologies has brought a new boom in 
neuromorphic computing. This has opened the door to many subfields, 
technologies and research directions. This novelty of the field also implies a 
lack of maturity, which comes with challenges that can be classified into four 
main categories. 
 
Lack of theoretical foundations 
 
Neuromorphic computing in general 
There are no clear theoretical foundations for neuromorphic computing. It is 
neither clear how exactly the brain works, nor which aspects of this working 
should be emulated by neuromorphic computing. 
 
Dedicated research on these topics and collaboration with neuroscientists must 
be conducted. These must keep in mind how to translate theoretical findings in 
usable hardware. 
 
Learning 
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Learning is a crucial element of computing systems inspired from the brain. In 
software artificial neural networks, it consumes huge amounts of data, time and 
energy. Neuromorphic computing aims at finding better approaches. However, 
these are still lacking clear solutions. 
 
In particular, neuromorphic computing aims at developing: 

 Training approaches using only local information 
 Training approaches with low bit precision available on the hardware  
 Better training & optimization of spiking neural networks  
 Data and power efficient online learning 
 Better understanding of unsupervised learning (and 3 factor rules which 

can implement all kinds of learning) 
 

 
Relationship to novel substrates and architectures 
Neuromorphic algorithms and architectures must be co-designed with their 
substrate. Theoretical foundations on how to achieve this are lacking. 
New bio-inspired concepts should be selected and optimized for their 
compatibility with electronic implementation. 
Computational models for non-Von Neumann architectures (beyond neural 
networks, non-linear oscillator networks, Ising machines, optimizers, etc...). 
must be developed. 
The scalability concepts and laws (equivalent of Dennard scaling for 
neuromorphic computing) are lacking and would be useful.  
 
 
Lack of technological maturity 
 
Novel technologies themselves 
Technologies beyond CMOS transistors in the digital regime suffer from low 
maturity. Some examples of such issues are: variability in analogue CMOS 
circuits, lack of endurance in memristive switching devices, difficulty to achieve 
analogue non-volatile memories. 
 
To address this issue, the community should work both on material and device 
development and on novel computational paradigms that function in spite (or 
even thanks to) the issues faced by emerging technologies. 
 
 
Accessibility 
Neuromorphic systems and devices are hard to access. The community should 
work on making hardware available, packaged for use, reliable and affordable. 
The development of versatile neuromorphic building blocks to be integrated into 
larger systems is a possibility. 
 
Lack of standardized tools and benchmarks 
 
Lack of whole stack from Hardware to Software 
Conventional computing has benefited from multi-decade development of the 
stack from hardware to software. This is not yet the case for neuromorphic 
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computing. The different layers of the stack are not independent or well-
defined. Knowledge of the whole stack is important to develop neuromorphic 
systems. Working on the maturity of the stack would make it easier to address 
each issue and facilitate scaling up of systems to more complex networks and 
tasks. 
 
Lack of tools for development 
There are not yet standard tools for developing neuromorphic systems. For 
instance, having a tool comparable to TensorFlow for deep learning that could 
be used for spiking neural networks would be of great use. 
 
Lack of benchmarks and targeted applications 
Neuromorphic computing is not necessarily efficient for the same applications 
as conventional software neural networks. New standards applications and 
benchmarks are still lacking for neuromorphic computing.  Corresponding 
datasets are also lacking.  
 
 
Lack of solid community 
 
A strong and well-identified community is critical for a scientific field of study, 
especially as new and growing field. In the case of the neuromorphic 
computing, this need is especially important but also complex to achieve. This 
is due to the heterogeneity and interdisciplinarity of the field. Neuromorphic 
computing brings together actors from computer science, neuroscience, 
physics, electronic engineering, material science and more. Academics, 
industrials and SME are involved. Such a diversity is a huge opportunity for the 
field both on the scientific and human sides. However, it requires special effort 
to make people from such different background communicate and collaborate.  
 
While community networks and events can self-organize in more narrow and 
mature fields, this should not be expected for neuromorphic computing, where 
a conscious action is needed. The Neurotech consortium and the resulting 
events and actions are a first step. As a striking example, many forum 
participants confided that this was the first neuromorphic computing event they 
had the opportunity to attend. More educational materials are also required to 
keep the community up to date with developments that are not in their core 
expertise, as well as to involve new actors. 
 
It is critical that such actions continue to be encouraged, both at the individual 
and institutional levels. 
 

 
 

Needs for adoption by industry 
 
Despise the importance and large span of applications for neuromorphic 
computing, a number of roadblocks need to be overcome in order to achieve 
adoption by industry. 
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Applications 
The community need to find some “killer apps” that will demonstrate the 
potential of neuromorphic computing. 
These demonstrations should highlight the fact the neuromorphic chips are 
competitive with existing solutions and in particular software based deep neural 
networks. 
 
Finding these applications requires: 

 Interactions between research actors and end users. 
 Increasing performance (e.g., TOPS/mm2 or TOPS/W) by orders of 

magnitude for conventional neural networks (CNN, LSTM, FC, ...)  
 Clear benchmarking of existing and proposed solutions, close to real 

applications. 
 If neuromorphic computing cannot compete with software neural 

networks in general, finding areas where it can/ 
 Performing demos on niche tasks. 

 
Maturity 
Neuromorphic computing is still technologically immature. Steps to make it 
more usable will require: 
 

 Increasing the technology readiness level of the beyond-CMOS 
technologies  

 Improving our understanding of neuromorphic computing to avoid a 
black-box situation 

 Definition and theorization of algorithms and computing/programming 
paradigms that use neuromorphic computing. For instance, spiking 
neural networks for performing engineering tasks. 

 Improving the scalability of devices and architectures 
 
Ease of use 
 
In order to be adopted by industrials beyond pure research and development, 
neuromorphic computing should be easy to use. This requires: 
 

 More tools and infrastructure for development and debugging  
 Development of reliable compiler software stacks  
 Design of user-friendly GUIs that can help end-users to write 

neuromorphic networks, such as spiking neural networks, that performs 
practical tasks.  

 Training people to have knowledge of the whole stack (materials, 
devices, systems, algorithms, applications) 
 

 Providing easier access to existing systems and platforms 
 Developing user-friendly development kits and methods for easier 

training and programming 
 Tacking the large amount of data needed for the training by developing 

systems that require less data and making more data available 
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 Catering to the development of communities to make skill transfer and 
collaboration easier. 

 
 
 
Actors and roles 
 
Research labs 
RTOs 
Industry (technology providers) 
Industry (users) 
Start-ups 

• explore new ideas, novel technologies 

• taking risks 

• build proof-of-concept demos for new application 
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